

EN 15544

Печи теплоаккумулирующие стационарные кафельные и оштукатуренные (интерпретация)

Рудольф Хазельбёк

STERREICHISCHER PARTIE

Обзор

- Почему EN 15544
- Область применения
- Что рассчитывается?
- Расчёт кафельной печи
 - Геометрия топки
 - Длина каналов
 - Продукты сгорания и температура дымовых газов
 - Аэродинамический расчёт

Почему следует рассчитывать кафельную печь по EN 15544?

- •В течении сотен лет строились кафельные печи, которые хорошо функционировали и без расчёта.
- •Однако, в последние годы из-за экологических проблем <mark>слово «функционирование» получи</mark>ло более глубокий смысл.
- Таким образом, сегодня хорошей печью считают не только ту, которая «хорошо отводит дымовые газы и не дымит в жилое помещение», но и прибор, способный при низких выбросах <mark>вредных веществ, обеспечить мини</mark>мальный требуемый КПД.
- •В большинстве европейских стран минимальный КПД и предельные значения выбросов определяются на законодательном уровне.

- •Определение размеров расчёт кафельных / оштукатуренных печей индивидуального изготовления.
- •Специально для следующих типов топлива: поленья и древесные брикеты
- •Однократная закладка топлива в течении периода аккумуляции тепла
- Максимальный объем топлива между 10 кг и 40 кг
- •Период аккумуляции (номинальное время нагрева) 8 24 ч

- •Используемый материал печной шамот с плотностью между 1750 и 2200 кг/м³, открытой пористостью от 18 до 33 % объема, теплопроводностью в области температур от 20 до 400°С между 0,65 и 0,90 Вт/мК.
- Размер стекла составляет 1/6 от площади внутренней поверхности топки

- •При проведении расчёта по этим нормам должны быть соблюдены условия:
 - Минимальное значение КПД 78%
 - Минимальное значение выбросов

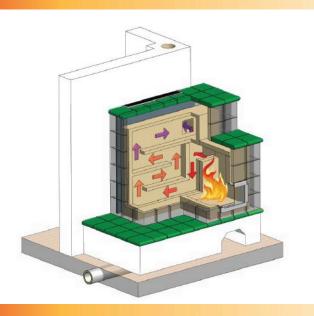
СО (окись углерода) 1.500 мг/мн³ (1.000 мг/мДж)

NOx (диоксид азота) 225 мг/мн³ (150 мг/мДж)

OGC (органически связанный углерод) 120 мг/мн³ (80 мг/мДж)

твердые частицы - 90 мг/мн³ (60 мг/мДж)

- •Этот метод расчёта и определения размеров кафельных и оштукатуренных печей основан на разработанном Австрийским Союзом Печников методе расчёта, а также на:
- •EN 13384-1 "Дымоходные системы. Расчёт конструкций для удаления дымовых газов"



Что рассчитывается?

- Ранее мощность кафельной печи определялась размером внешней поверхности (например: 900 Вт/м²).
- Данное определение мощности, однако, верно лишь отчасти.
- Для правильного определения мощности печи, необходимо учесть кол-во дров в топке, номинальное время нагрева и только потом рассчитывать печь
- В зависимости от требуемых значений

тепловой мощности и времени между закладками, рассчитываются следующие параметры:

- Количество дров в одной закладке
- Размеры топки (В/Ш/Г), минимальная длина каналов
- Конструкции из шамота толщина стен
- Сечение каналов в соответствии с сечением дымовой трубы

- Определение номинальной тепловой мощности печи:
 - по оценочным критериям
 - в результате расчёта тепловой нагрузки
- Расчёт минимального и максимального количества топлива:
 - В зависимости от номинальной тепловой мощности и времени между закладками

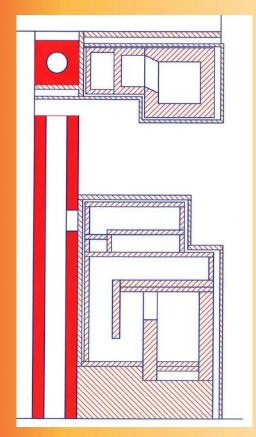
$$m_{\mathsf{B}} = \frac{P_{\mathsf{n}} \cdot t_{\mathsf{n}}}{3,25}$$

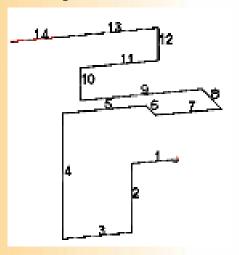
$$m_{\text{Bmin}} = 0.5 \cdot m_{\text{B}}$$

тв максимальное количество топлива в кг

Р_п согласованная номинальная тепловая мощность в кВт

 $t_{\rm n}$ согласованное время аккумуляции в ч





Пример

Общие данные					
отопительная мощность	3,20	кВт	Рассчитать отопительную нагрузку		
геодезическая высота	200	м	Время между закладками	12	•
Автоматика отключен	RNI				
Строительный тип		Нор	мальный тип топки (максимальное кол-в	о топл	ива 10-40
Строительный тип ☑ С воздушным зазором	t	Нор	мальный тип топки (максимальное кол-в максимальное кол-во топлива	0 TOUT	

- Расчёт основных размеров топки:
 - Внутренняя поверхность топки

$$O_{\mathsf{BR}} = 900 \cdot m_{\mathsf{B}}$$

максимальное количество топлива в кг

 O_{RR} площадь внутренней поверхности топки в см²

Учитываются все боковые стенки, под, перекрытие топки, площадь дверцы и площадь поперечного сечения для отвода продуктов сгорания из топки.

Размеры камеры сгорания влияют на качество сгорания топлива <mark>и, как следствие, на выбросы</mark>

• Расчёт основных размеров топки:

Высота топки

$$H_{\mathsf{BR}} = \frac{900 \cdot m_{\mathsf{B}} - 2 \cdot A_{\mathsf{BR}}}{U_{\mathsf{BR}}}$$

 $m_{\rm B}$ максимальное количество топлива в кг

 A_{BR} площадь пода в см 2

 H_{BR} высота топки в см

 $U_{\rm BR}$ периметр топки в см

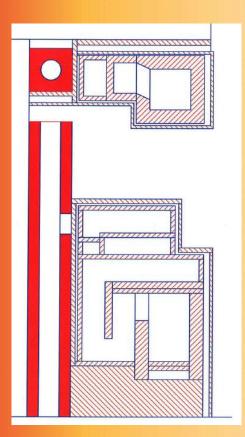
Минимальная высота топки:

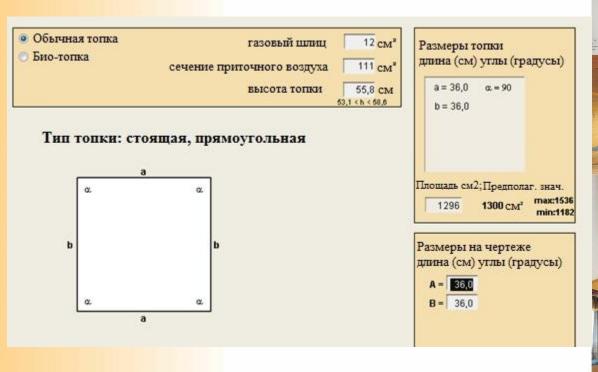
$$H_{\mathsf{BR}} \geq 25 + m_{\mathsf{B}}$$

- Расчёт основных размеров топки:
 - Максимальный размер стекла печной дверцы

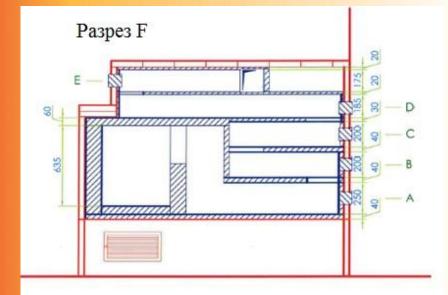
Макс. площадь стекла = $O_{BR}/6$ [cm²]

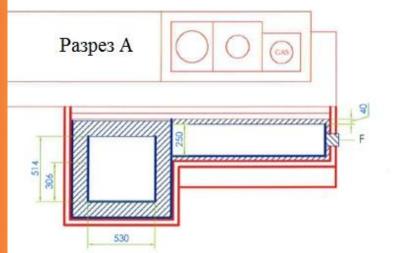
 O_{BR} площадь внутренней поверхности топки в см²





• Пример





Расчёт минимальной длины дымовых каналов:

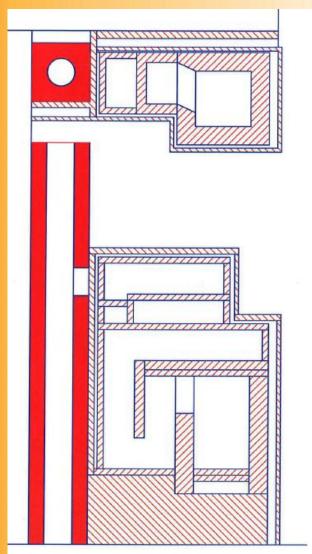
 Существуют различия в методике расчета кафельных печей различных строительных типов

Строительный тип без воздушного зазора (традиционная конструкция)

$$L_{\text{Zmin}} = 1.3 \cdot \sqrt{m_{\text{B}}}$$

m_в максимальное количество топлива в кг

_{7min} минимальная длина дымовых каналов в м



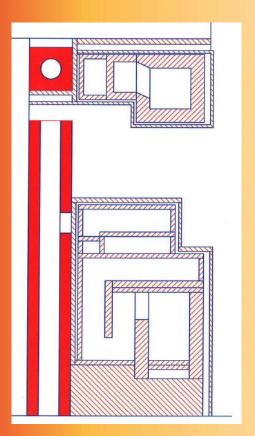
- Расчёт минимальной длины дымовых каналов:
 - Существуют различия в методике расчета кафельных печей различных строительных типов

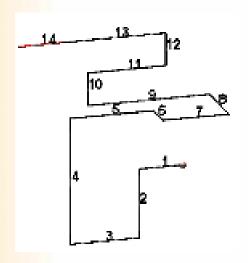
Строительный тип: с воздушным зазором

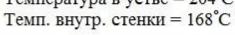
$$L_{\mathsf{Zmin}} = 1.5 \cdot \sqrt{m_{\mathsf{B}}}$$

 $m_{\rm B}$ максимальное количество топлива в кг

 $L_{7 \min}$ минимальная длина дымовых каналов в м






Пример

Мин. длина канала=5,16м Действит. длина канала=5,32м КПД=78,8%

Разница давлений =0,32Па Температура в устье = 204°C

- Расчёт минимальной длины дымовых каналов:
 - Максимальная длина дымовых каналов не рассчитывается!
 - Однако, максимальная длина дымовых каналов ограничена:
 - Тягой дымовой трубы
 - Охлаждением дымовых газов в дымовой трубе опасность образования конденсата!

Длина дымовых каналов напрямую влияет на КПД печи!

Расчёт газового шлица (байпаса):

$$A_{GS} = 1 \cdot m_{B}$$

 $A_{\rm GS}$ сечение газового шлица в см²

тв максимальное количество топлива в кг

- •Определение основных теплотехнических показателей кафельной печи:
 - Расход топлива [кг/ч]

$$m_{BU}=0.78\!\cdot\! m_B$$

максимальная количество топлива в кг

 $m_{\rm В∪}$ оптимальный расход топлива в кг/ч

Определение среднего коэффициента избытка воздуха: $\lambda = 2.95$

 $\dot{m}_{\rm G} = 0.0035 \cdot m_{\rm R}$ Массовый поток дымовых газов:

- •Определение объемного расхода воздуха на горение и объемного расхода дымовых газов:
 - Объемный расход воздуха на горение

$$\dot{V}_{L} = 0.00256 \cdot m_{B} \cdot f_{t} \cdot f_{s}$$

 \dot{V} L объемный расход воздуха на горение в м 3 /с

тв максимальное количество топлива в кг

ft температурный корректирующий коэффициент

fs корректирующий коэффициент высоты над уровнем моря

Определение требуемого свободного сечения для подвода воздуха при скорости потока от 2 до 4 м/с:

$$A = \frac{\dot{V}}{v}$$

- v скорость потока в м/с
- ў объемный расход воздуха, воздуха на горение, дымовых газов в м³/с
- лощадь поперечного сечения потока в м²

- •Определение объемного расхода воздуха на горение и объемного расхода дымовых газов :
 - Объемный расход дымовых газов

$$\dot{V}_{G} = 0.00273 \cdot m_{B} \cdot f_{t} \cdot f_{s}$$

 \dot{v} L объемный расход воздуха на горение в м 3 /с

m_В максимальное количество топлива в кг

ft температурный корректирующий коэффициент

√ корректирующий коэффициент высоты над уровнем моря

Определение требуемого свободного сечения для подвода воздуха при скорости потока от 1,2 до 6 м/с:

$$A = \frac{\dot{V}}{v}$$

у скорость потока в м/с

 объемный расход воздуха, воздуха на горение, дымовых газов в м³/с

лощадь поперечного сечения потока в м²

• Определение корректирующих коэффициентов:

Корректирующий температурный коэффициент

$$f_{t} = \frac{273 + t}{273}$$

Корректирующий температурный коэффициент

t Температура в °С

Корректирующий коэффициент высоты над уровнем моря

$$f_{\rm s} = \frac{1}{e^{(-9.81*z)/78624}}$$

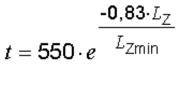
Корректирующий коэффициент высоты над уровнем моря

^z геодезическая высота в м

- Расчёт температуры продуктов сгорания и дымовых газов:
 - Среднее значение температуры в топке

$$t_{BR} = 700$$

 t_{BR} Температура в топке в °С



- Расчёт температуры продуктов сгорания и дымовых газов:
 - **Температура в каналах продуктов сгорания**

Температура в °С

Длина каналов продуктов сгорания в м

Минимальная длина дымовых каналов в м

•Определение толщины шамота в зависимости от времени аккумуляции и температуры продуктов сгорания в канале:

Время между закладками tn может быть в пределах от 8 до 24 часов. На практике, хорошо себя зарекомендовали следующие толщины шамота в зависимости от средней температуры продуктов сгорания:

Температура в [°С]	0 - 200	200 - 250	250 - 300	300 - 400	> 400
Закладка через 8 ч	15 _{MM}	15 мм	20 мм	25 мм	30 _{MM}
Закладка через 12 ч	15 мм	20 мм	25 мм	30 мм	40 мм
Закладка через 16-24 ч	25 мм	30 мм	30 мм	40 мм	50 мм

Эти значения применимы для внешней оболочки из кафеля либо других печных материалов толщиной около 55 мм.



• Пример

ым. тр

												•			
Nr.	[M]	h[M]	Dir.	A[M ²]	b[cm]	h [см]	T[°C]	VA [M³/c]	V [M/C]	ph[∏a]	ม	pr[∏a]	pd[∏a]	ζ	pu[
Канал 1	0,25	0,00	0	0,0648	27,0	24,0	539	0,098	1,52	0,00	0,0401	0,02	0,48	0,00	0
Канал 2	0,40	-0,40	90	0,0540	27,0	20,0	512	0,095	1,76	-3,24	0,0415	0,05	0,67	1,20	0
Канал 3	0,40	0,00	90	0,0540	27,0	20,0	480	0,091	1,69	0,00	0,0415	0,05	0,65	1,20	0
Канал 4	0,73	0,73	90	0,0640	32,0	20,0	438	0,086	1,35	5,59	0,0405	0,05	0,43	1,20	0
Канал 5	0,48	0,00	90	0,0280	14,0	20,0	397	0,081	2,90	0,00	0,0469	0,29	2,14	1,39	2
Канал б	0,18	0,00	90	0,0280	14,0	20,0	377	0,079	2,81	0,00	0,0469	0,11	2,08	1,20	2
Канал 7	0,38	0,00	90	0,0280	14,0	20,0	360	0,077	2,74	0,00	0,0469	0,22	2,02	1,20	2
	0.07	0.00	0.0	0.0000	440	20.0	าาก	0.074	200	0.00	0.0460	0.04	4.00	4.00	^
Воздух				0,0111				2							
Топка										Į	Данные для	Уда	лить		

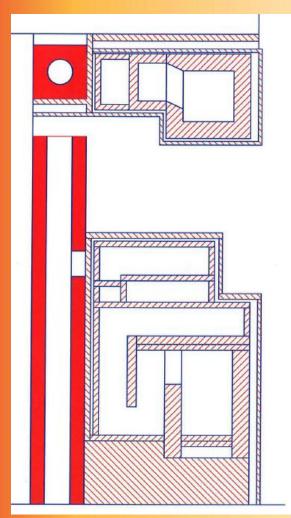
0,0254

18,0

206

0,058

2,28


- Определение температуры дымовых газов в дымовой трубе и температуры на внутренней стенке устья дымовой трубы:
 - Необходимо для определения статического давления в дымоходе.
 - Определение температуры на внутренней стенке устья дымовой трубы для проверки прохождения точки росы (опасность образования конденсата при температуре внутренней стенки < 45°C)

По EN 13384 – 1 "Расчёт конструкций для удаления дымовых газов"

Nr.	[M]	h[M]	Dir.	A [_M ²]	b[cm]	h [см]	T[°C]	VA [M³/c]	v [m/c]	ph[∏a]	ม์	pr[∏a]	pd[∏a]	ζ	pu[∏a]
Канал 1	0,25	0,00	0	0,0648	27,0	24,0	539	0,098	1,52	0,00	0,0401	0,02	0,48	0,00	0,00
Канал 2	0,40	-0,40	90	0,0540	27,0	20,0	512	0,095	1,76	-3,24	0,0415	0,05	0,67	1,20	0,81
Канал 3	0,40	0,00	90	0,0540	27,0	20,0	480	0,091	1,69	0,00	0,0415	0,05	0,65	1,20	0,78
Канал 4	0,73	0,73	90	0,0640	32,0	20,0	438	0,086	1,35	5,59	0,0405	0,05	0,43	1,20	0,52
Канал 5	0,48	0,00	90	0,0280	14,0	20,0	397	0,081	2,90	0,00	0,0469	0,29	2,14	1,39	2,99
Канал 6	0,18	0,00	90	0,0280	14,0	20,0	377	0,079	2,81						
Канал 7	0,38	0,00	90	0,0280	14,0	20,0	360	0,077	2,74	Темпе	ратура уст	ъя дымо	вой труб	ы = 204	°C
	0.27	0.00	00	0.0000	440	20.0	ാവ	0.074	200						-
Воздух				0,0111						Темпе	ратура вну	утренней	і стенки	Д.Т. = 1	.68°C
Топка										S. C.		era - Europa era era era era era era era era era er		TO BUT AND A TO SERVE	
						5 5									7
Дым. тр	4,6			0,0254	18,0		206	0,058	2,28	25,48		1,90		1,20	2,28
Сумма	50 10			/ 104	6 00			0 10	V 1000 V	35,20		4,12		77	30,76

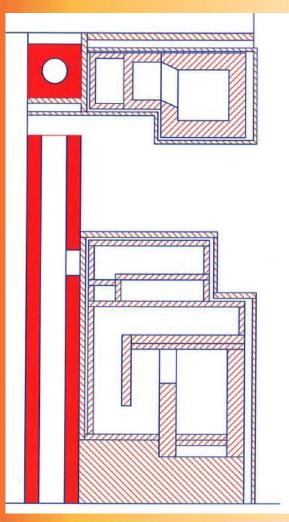
Аэродинамический расчёт:

Расчёт статического давления (подъемной силы)

- Статическое давление возникает в дымоходе из-за разницы плотностей газообразных продуктов сгорания топлива и воздушного столба
- В топке, подъемных каналах продуктов сгорания и дымовой трубе значения статического давления положительные
- В опускных каналах значение статического давления отрицательное

$$p_{\rm h} = g \cdot H \cdot (\rho_{\rm L} - \rho_{\rm G})$$

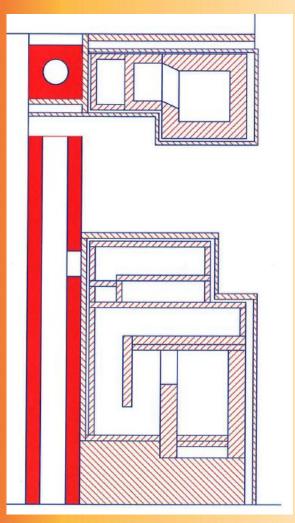
- Рh Статическое давление в Па
- g Ускорение свободного падения (9,8 м/ c^2)
- Эффективная высота в м (от точки подключения)
- д плотность воздуха в кг/м³
- РG ПЛОТНОСТЬ ГАЗОВ В КГ/М³



- Аэродинамический расчёт:
 - Расчёт потерь давления на трение
 - Потери давления на трение происходят в каналах продуктов сгорания, в соединительном патрубке и в дымовой трубе.

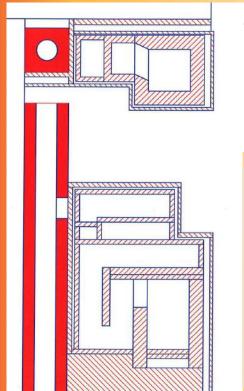
$$p_{\mathsf{R}} = \frac{\lambda_{\mathsf{f}} \cdot p_{\mathsf{d}} \cdot L}{D_{\mathsf{h}}}$$

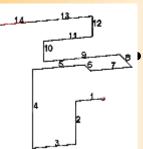
- $p_{\rm f}$ Потери давления на трение в Па;
- р_d Динамическое давление в Па;
- Жоэффициент потерь давления на трение;
- Длина канала продуктов сгорания, соединительного патрубка или конструкции для удаления дымовых газов, в м
- D_{h} Гидравлический диаметр в м



- Аэродинамический расчёт :
 - Расчёт потери давления при повороте
 - Рассчитывается из динамического давления и коэффициента сопротивления

$$p_{\mathsf{u}} = \zeta \cdot p_{\mathsf{d}}$$


- p_{u} Потери давления в Па;
- ζ Коэффициент сопротивления при повороте;
- p_{d} Динамическое давление в Па.



🔁 <mark>•Аэрод</mark>инамический расчёт:

Проверка – условие по давлению

Nr.	[M]	h[M]	Dir.	A[M]	b[cm]	h[cm]	T[°C]	VA[M³/c]	vim/d	ph[Pa]	λſ	pr[∏a]	pd[∏a]	ζ	pu[∏a]
	0,10	0,00	30	0,0200	14,0	20,0	377	0,079	2,01	0,00	0,0409	0,11	2,00	1,20	2,49
Канал 7	0,38	0,00	90	0,0280	14,0	20,0	360	0,077	2,74	0,00	0,0469	0,22	2,02	1,20	2,43
Канал 8	0,37	0,00	90	0,0280	14,0	20,0	339	0,074	2,65	0,00	0,0469	0,21	1,96	1,20	2,35
Канал 9	0,70	0,00	90	0,0280	14,0	20,0	311	0,071	2,53	0,00	0,0469	0,37	1,87	1,20	2,24
Канал 10	0,19	0,19	90	0,0280	20,0	14,0	290	0,068	2,43	1,22	0,0469	0,10	1,80	1,20	2,16
Канал 11	0,45	0,00	90	0,0280	20,0	14,0	275	0,066	2,37	0,00	0,0469	0,22	1,75	1,20	2,10
Канал 12	0,19	0,19	90	0,0280	20,0	14,0	261	0,065	2,31	1,16	0,0469	0,09	1,71	1,20	2,05
Канал 13	0,60	0,00	90	0,0280	20,0	14,0		0,063	2,24	0,00	0,0469	0,28	1,66	1,20	1,99
ПДТ 14	0,25	10000		0,0201	16,0	1089754	228	0,061	3,04	0,00	0,0325	0,16	3,13	0,00	0,00
Bosnyx				0,0111	1								5,28	0,30	5,58
Топка				- 1						4,98					0,00
Д. точба	4,6			0,0254	18,0		206	0,058	2,28	25,48		1,90		1,20	2,28
Сумма									10000	35,20		4,12			30,76

ПДТ 14 — патрубок от каналов к дымовой трубе

 $\sum \rho_{\mathsf{r}} + \sum \rho_{\mathsf{u}} \leq \sum \rho_{\mathsf{h}} \leq 1.05 \cdot \left(\sum \rho_{\mathsf{r}} + \sum \rho_{\mathsf{u}}\right)$

 $4,12+30,76 \le 35,20 \le 1,05 \times (4,12+30,76)$

 $34,88 \le 35,20 \le 36,62$

 $\Delta p = 1,74 \, Pa$

